AmpleAI Plugin

To get an OpenAI API key, sign up for OpenAI, then visit OpenAI's API keys page.


View this plugin in the Amplenote Plugin Directory | Install this plugin | View this plugin as a public note


name

AmpleAI

Information

description

OpenAI & Ollama interface built to enhance note taking, answer questions, and help proofread documents.


icon

psychology


setting

OpenAI API Key

setting

Preferred AI model (e.g., 'gpt-4o')

Accepts a comma-delimited list of preferred models. E.g., gpt-4-1106-preview, mistral. If blank, defaults to gpt-4o

setting

API Key

Deprecated, use the OpenAI API key field instead

instructions

This plugin imbues Amplenote with various AI superpowers, including:

- Selected text features -
Features invoked by selecting text and choosing an option from the ensuing toolbar.
1. Thesaurus. Get 10 suggested synonyms that make sense in the context around the word.
2. Answer question. If your highlighted text appears to be a question, you'll have the option to ask the AI for an answer to that question.
3. Complete a sentence. What text seems like it should come after the selected text?
4. Revise. How could the selected text be improved?
5. Rhymes with. What are 10 words that rhyme with the selected word?

- Note option features -
Features available by clicking the triple dot menu when a note is open.
1. Sort groceries. Given a task or bullet-list of grocery items, arrange them by the aisle they can be found in the grocery store
2. Revise. Suggest revisions to the entire note.
3. Summarize. Summarize the text of the open note.

- Evaluation/Insert text features -
Features invoked by entering an open bracket { and typing one of the following.
1. Complete. Answer a question or finish a thought from the words prior to this being invoked.
2. Continue. Continue in a similar style with the text that preceded "Continue" being invoked.
3. Image from preceding. Generate a Dall-e-2 or Dall-e-3 image.
4. Image from prompt. Generate a Dall-e-2 or Dall-e-3 image from a prompt that you enter after selecting this.
5. Suggest tasks. Based on the note title and contents, suggest relevant tasks to undertake.

- App option (Quick Open) features -
Features accessed by invoking Quick Open and typing the bold words below.
1. Question & answer. Ask a question to OpenAI or the Ollama LLM of your choosing.
2. Converse/Chat. Have a back-and-forth conversation that remembers the previous responses.

This plugin sends requests to OpenAI (defaults is currently gpt-4-1106-preview), or to a local Ollama instance, if you have installed Ollama and you don't have an OpenAI API key entered.

To get an OpenAI API key, sign up for OpenAI (https://platform.openai.com/signup), then visit OpenAI's API keys page (https://platform.openai.com/account/api-keys). If you find that all API calls fail, confirm that you have credits in your OpenAI account.

To use the plugin with Ollama, start by installing Ollama from its download link. Then install an LLM using ollama run, for example, ollama run mistral (we have found that "mistral" seems to offer the best results as of early 2024). After Ollama is installed, you will need to stop the resident Ollama server (click Ollama icon in your toolbar and choose "Quit"), then open a console and run OLLAMA_ORIGINS=https://plugins.amplenote.com ollama serve. You can test that your Ollama server has been started correctly by invoking Quick Open and running "Look up available Ollama models." If it doesn't work, run ps aux | grep ollama in console to find existing Ollama servers, and kill those before re-running the command with OLLAMA_ORIGINS specified.

Find more documentation on this plugin within the Amplenote Help Center.



Used by Plugin Builder:

Entry: https://github.com/alloy-org/ai-plugin/build/compiled.js


linkVersion History

June 22, 2024. Improve parsing of certain AI responses, like Thesaurus.

February 21, 2023. Improvements to streaming, fix "Follow up question" not working when "Summarize" option chosen.

December 30, 2023

Add "Image from preceding"

December 29, 2023

Add Thesaurus

Add Sort Groceries

Add dual LLM querying

Add response streaming

Add LLM chat

Utilize JSON responses for better response consistency

June 29, 2023. Add request timeout and retry. Improvements to "Complete" and "Continue."

June 28, 2023. Add "Complete" as an alias of "Continue." Set up complete & continue to send text surrounding them, so they can be utilized after the first 12k characters of a note.

May 24, 2023. Added "Continue," "Rhyming," and "Answer" options

April 12, 2023. Added gpt-4 as option

March 29, 2023. Initial implementation


linkCode Block

// Javascript updated 6/23/2024, 5:11:34 PM by Amplenote Plugin Builder from source code within "https://github.com/alloy-org/ai-plugin/build/compiled.js"
(() => {
// lib/constants/functionality.js
var MAX_WORDS_TO_SHOW_RHYME = 4;
var MAX_WORDS_TO_SHOW_THESAURUS = 4;
var MAX_REALISTIC_THESAURUS_RHYME_WORDS = 4;
var REJECTED_RESPONSE_PREFIX = "The following responses were rejected:\n";
 
// lib/constants/units.js
var KILOBYTE = 1024;
var TOKEN_CHARACTERS = 4;
 
// lib/constants/provider.js
function openAiTokenLimit(model) {
return OPENAI_TOKEN_LIMITS[model];
}
function openAiModels() {
return Object.keys(OPENAI_TOKEN_LIMITS);
}
function isModelOllama(model) {
return !openAiModels().includes(model);
}
var DALL_E_DEFAULT = "1024x1024~dall-e-3";
var DEFAULT_OPENAI_MODEL = "gpt-4o";
var LOOK_UP_OLLAMA_MODEL_ACTION_LABEL = "Look up available Ollama models";
var MIN_OPENAI_KEY_CHARACTERS = 50;
var OLLAMA_URL = "http://localhost:11434";
var OLLAMA_TOKEN_CHARACTER_LIMIT = 2e4;
var OLLAMA_MODEL_PREFERENCES = [
"mistral",
"openhermes2.5-mistral",
"llama2"
];
var OPENAI_TOKEN_LIMITS = {
"gpt-3.5": 4 * KILOBYTE * TOKEN_CHARACTERS,
"gpt-3.5-turbo": 4 * KILOBYTE * TOKEN_CHARACTERS,
"gpt-3.5-turbo-16k": 16 * KILOBYTE * TOKEN_CHARACTERS,
"gpt-3.5-turbo-1106": 16 * KILOBYTE * TOKEN_CHARACTERS,
"gpt-3.5-turbo-instruct": 4 * KILOBYTE * TOKEN_CHARACTERS,
"gpt-4": 8 * KILOBYTE * TOKEN_CHARACTERS,
"gpt-4o": 128 * KILOBYTE * TOKEN_CHARACTERS,
"gpt-4-1106-preview": 128 * KILOBYTE * TOKEN_CHARACTERS,
"gpt-4-32k": 32 * KILOBYTE * TOKEN_CHARACTERS,
"gpt-4-32k-0613": 32 * KILOBYTE * TOKEN_CHARACTERS,
"gpt-4-vision-preview": 128 * KILOBYTE * TOKEN_CHARACTERS
};
 
// lib/constants/prompt-strings.js
var APP_OPTION_VALUE_USE_PROMPT = "What would you like to do with this result?";
var IMAGE_GENERATION_PROMPT = "What would you like to generate an image of?";
var NO_MODEL_FOUND_TEXT = `Could not find an available AI to call. Do you want to install and utilize Ollama, or would you prefer using OpenAI?
 
For casual-to-intermediate users, we recommend using OpenAI, since it offers higher quality results and can generate images.`;
var OLLAMA_INSTALL_TEXT = `Rough installation instructions:
1. Download Ollama: https://ollama.ai/download
2. Install Ollama
3. Install one or more LLMs that will fit within the RAM your computer (examples at https://github.com/jmorganca/ollama)
4. Ensure that Ollama isn't already running, then start it in the console using "OLLAMA_ORIGINS=https://plugins.amplenote.com ollama serve"
You can test whether Ollama is running by invoking Quick Open and running the "${LOOK_UP_OLLAMA_MODEL_ACTION_LABEL}" action`;
var OPENAI_API_KEY_URL = "https://platform.openai.com/account/api-keys";
var OPENAI_API_KEY_TEXT = `Paste your OpenAI API key in the field below.
 
Once you have an OpenAI account, get your key here: ${OPENAI_API_KEY_URL}`;
var OPENAI_INVALID_KEY_TEXT = `That doesn't seem to be a valid OpenAI API key. Possible next steps:
 
1. Enter one later in the settings for this plugin
2. Install Ollama
3. Re-run this command and enter a valid OpenAI API key (must be at least ${MIN_OPENAI_KEY_CHARACTERS} characters)`;
var QUESTION_ANSWER_PROMPT = "What would you like to know?";
 
// lib/constants/settings.js
var AI_MODEL_LABEL = "Preferred AI model (e.g., 'gpt-4')";
var CORS_PROXY = "https://wispy-darkness-7716.amplenote.workers.dev";
var IMAGE_FROM_PRECEDING_LABEL = "Image from preceding text";
var IMAGE_FROM_PROMPT_LABEL = "Image from prompt";
var MAX_SPACES_ABORT_RESPONSE = 30;
var SUGGEST_TASKS_LABEL = "Suggest tasks";
var PLUGIN_NAME = "AmpleAI";
var OPENAI_KEY_LABEL = "OpenAI API Key";
 
// lib/prompt-api-params.js
function isJsonPrompt(promptKey) {
return !!["rhyming", "thesaurus", "sortGroceriesJson", "suggestTasks"].find((key) => key === promptKey);
}
function useLongContentContext(promptKey) {
return ["continue", "insertTextComplete"].includes(promptKey);
}
function limitContextLines(aiModel, _promptKey) {
return !/(gpt-4|gpt-3)/.test(aiModel);
}
function tooDumbForExample(aiModel) {
const smartModel = ["mistral"].includes(aiModel) || aiModel.includes("gpt-4");
return !smartModel;
}
function frequencyPenaltyFromPromptKey(promptKey) {
if (["rhyming", "suggestTasks", "thesaurus"].find((key) => key === promptKey)) {
return 2;
} else if (["answer"].find((key) => key === promptKey)) {
return 1;
} else if (["revise", "sortGroceriesJson", "sortGroceriesText"].find((key) => key === promptKey)) {
return -1;
} else {
return 0;
}
}
 
// lib/util.js
function truncate(text, limit) {
return text.length > limit ? text.slice(0, limit) : text;
}
function arrayFromJumbleResponse(response) {
if (!response)
return null;
const splitWords = (gobbledeegoop) => {
let words;
if (Array.isArray(gobbledeegoop)) {
words = gobbledeegoop;
} else if (gobbledeegoop.includes(",")) {
words = gobbledeegoop.split(",");
} else if (gobbledeegoop.includes("\n")) {
words = gobbledeegoop.split("\n");
} else {
words = [gobbledeegoop];
}
return words.map((w) => w.trim());
};
let properArray;
if (Array.isArray(response)) {
properArray = response.reduce((arr, gobbledeegoop) => arr.concat(splitWords(gobbledeegoop)), []);
} else {
properArray = splitWords(response);
}
return properArray;
}
async function trimNoteContentFromAnswer(app, answer, { replaceToken = null, replaceIndex = null } = {}) {
const noteUUID = app.context.noteUUID;
const note = await app.notes.find(noteUUID);
const noteContent = await note.content();
let refinedAnswer = answer;
if (replaceIndex || replaceToken) {
replaceIndex = replaceIndex || noteContent.indexOf(replaceToken);
const upToReplaceToken = noteContent.substring(0, replaceIndex - 1);
const substring = upToReplaceToken.match(/(?:[\n\r.]|^)(.*)$/)?.[1];
const maxSentenceStartLength = 100;
const sentenceStart = !substring || substring.length > maxSentenceStartLength ? null : substring;
if (replaceToken) {
refinedAnswer = answer.replace(replaceToken, "").trim();
if (sentenceStart && sentenceStart.trim().length > 1) {
console.debug(`Replacing sentence start fragment: "${sentenceStart}"`);
refinedAnswer = refinedAnswer.replace(sentenceStart, "");
}
const afterTokenIndex = replaceIndex + replaceToken.length;
const afterSentence = noteContent.substring(afterTokenIndex + 1, afterTokenIndex + 100).trim();
if (afterSentence.length) {
const afterSentenceIndex = refinedAnswer.indexOf(afterSentence);
if (afterSentenceIndex !== -1) {
console.error("OpenAI seems to have returned content after prompt. Truncating");
refinedAnswer = refinedAnswer.substring(0, afterSentenceIndex);
}
}
}
}
const originalLines = noteContent.split("\n").map((w) => w.trim());
const withoutOriginalLines = refinedAnswer.split("\n").filter((line) => !originalLines.includes(line.trim())).join("\n");
const withoutJunkLines = cleanTextFromAnswer(withoutOriginalLines);
console.debug(`Answer originally ${answer.length} length, refined answer ${refinedAnswer.length}. Without repeated lines ${withoutJunkLines.length} length`);
return withoutJunkLines.trim();
}
function balancedJsonFromString(string) {
const jsonStart = string.indexOf("{");
if (jsonStart === -1)
return null;
const jsonAndAfter = string.substring(jsonStart).trim();
const pendingBalance = [];
let jsonText = "";
for (const char of jsonAndAfter) {
jsonText += char;
if (char === "{") {
pendingBalance.push("}");
} else if (char === "}") {
if (pendingBalance[pendingBalance.length - 1] === "}")
pendingBalance.pop();
} else if (char === "[") {
pendingBalance.push("]");
} else if (char === "]") {
if (pendingBalance[pendingBalance.length - 1] === "]")
pendingBalance.pop();
}
if (pendingBalance.length === 0)
break;
}
if (pendingBalance.length) {
console.debug("Found", pendingBalance.length, "characters to append to balance", jsonText, ". Adding ", pendingBalance.reverse().join(""));
jsonText += pendingBalance.reverse().join("");
}
return jsonText;
}
function arrayFromResponseString(responseString) {
if (typeof responseString !== "string")
return null;
const listItems = responseString.match(/^[\-*\d.]+\s+(.*)$/gm);
if (listItems?.length) {
return listItems.map((item) => optionWithoutPrefix(item));
} else {
return null;
}
}
function optionWithoutPrefix(option) {
if (!option)
return option;
const withoutStarAndNumber = option.trim().replace(/^[\-*\d.]+\s+/, "");
const withoutCheckbox = withoutStarAndNumber.replace(/^-?\s*\[\s*]\s+/, "");
return withoutCheckbox;
}
function cleanTextFromAnswer(answer) {
return answer.split("\n").filter((line) => !/^(~~~|```(markdown)?)$/.test(line.trim())).join("\n");
}
function jsonFromAiText(jsonText) {
let json;
let jsonStart = jsonText.indexOf("{");
if (jsonStart === -1) {
jsonText = `{${jsonText}`;
jsonStart = 0;
}
let jsonEnd = jsonText.lastIndexOf("}") + 1;
if (jsonEnd === 0) {
if (jsonText[jsonText.length - 1] === ",")
jsonText = jsonText.substring(0, jsonText.length - 1);
if (jsonText.includes("[") && !jsonText.includes("]"))
jsonText += "]";
jsonText = `${jsonText}}`;
} else {
jsonText = jsonText.substring(jsonStart, jsonEnd + 1);
}
try {
json = JSON.parse(jsonText);
return json;
} catch (e) {
const parseTextWas = jsonText;
jsonText = balancedJsonFromString(jsonText);
console.error("Failed to parse jsonText", parseTextWas, "due to", e, "Attempted rebalance yielded", jsonText);
try {
json = JSON.parse(jsonText);
return json;
} catch (e2) {
console.error("Rebalanced jsonText still fails", e2);
}
let reformattedText = jsonText.replace(/"""/g, `"\\""`).replace(/"\n/g, `"\\n`);
reformattedText = reformattedText.replace(/\n\s*['“”]/g, `
"`).replace(/['“”],\s*\n/g, `",
`).replace(/['“”]\s*([\n\]])/, `"$1`);
if (reformattedText !== jsonText) {
try {
json = JSON.parse(reformattedText);
return json;
} catch (e2) {
console.error("Reformatted text still fails", e2);
}
}
}
return null;
}
 
// lib/fetch-json.js
var streamTimeoutSeconds = 2;
function shouldStream(plugin2) {
return !plugin2.constants.isTestEnvironment || plugin2.constants.streamTest;
}
function streamPrefaceString(aiModel, modelsQueried, promptKey, jsonResponseExpected) {
let responseText = "";
if (["chat"].indexOf(promptKey) === -1 && modelsQueried.length > 1) {
responseText += `Response from ${modelsQueried[modelsQueried.length - 1]} was rejected as invalid.
`;
}
responseText += `${aiModel} is now generating ${jsonResponseExpected ? "JSON " : ""}response...`;
return responseText;
}
function jsonFromMessages(messages) {
const json = {};
const systemMessage = messages.find((message) => message.role === "system");
if (systemMessage) {
json.system = systemMessage.content;
messages = messages.filter((message) => message !== systemMessage);
}
const rejectedResponseMessage = messages.find((message) => message.role === "user" && message.content.startsWith(REJECTED_RESPONSE_PREFIX));
if (rejectedResponseMessage) {
json.rejectedResponses = rejectedResponseMessage.content;
messages = messages.filter((message) => message !== rejectedResponseMessage);
}
json.prompt = messages[0].content;
if (messages[1]) {
console.error("Unexpected messages for JSON:", messages.slice(1));
}
return json;
}
function extractJsonFromString(inputString) {
let jsonText = inputString.trim();
let jsonStart = jsonText.indexOf("{");
if (jsonStart === -1) {
jsonText = "{" + jsonText;
}
let responses;
if (jsonText.split("}{").length > 1) {
responses = jsonText.split("}{").map((text) => `${text[0] === "{" ? "" : "{"}${text}${text[text.length - 1] === "}" ? "" : "}"}`);
console.log("Received multiple responses from AI, evaluating each of", responses);
} else {
responses = [jsonText];
}
const jsonResponses = responses.map((jsonText2) => {
return jsonFromAiText(jsonText2);
});
const formedResponses = jsonResponses.filter((n) => n);
if (formedResponses.length) {
if (formedResponses.length > 1) {
const result = formedResponses[0];
Object.entries(result).forEach(([key, value]) => {
for (const altResponse of formedResponses.slice(1)) {
const altValue = altResponse[key];
if (altValue) {
if (Array.isArray(altValue) && Array.isArray(value)) {
result[key] = [.../* @__PURE__ */ new Set([...value, ...altValue])].filter((w) => w);
}
}
}
});
return result;
} else {
return formedResponses[0];
}
}
return null;
}
async function responseFromStreamOrChunk(app, response, model, promptKey, streamCallback, allowResponse, { timeoutSeconds = 30 } = {}) {
const jsonResponseExpected = isJsonPrompt(promptKey);
let result;
if (streamCallback) {
result = await responseTextFromStreamResponse(app, response, model, jsonResponseExpected, streamCallback);
app.alert(result, { scrollToEnd: true });
} else {
try {
await Promise.race([
new Promise(async (resolve, _) => {
const jsonResponse = await response.json();
result = jsonResponse?.choices?.at(0)?.message?.content || jsonResponse?.choices?.at(0)?.message?.tool_calls?.at(0)?.function?.arguments || jsonResponse?.message?.content || jsonResponse?.response;
resolve(result);
}),
new Promise(
(_, reject) => setTimeout(() => reject(new Error("Ollama timeout")), timeoutSeconds * 1e3)
)
]);
} catch (e) {
console.error("Failed to parse response from", model, "error", e);
throw e;
}
}
const resultBeforeTransform = result;
if (jsonResponseExpected) {
result = extractJsonFromString(result);
}
if (!allowResponse || allowResponse(result)) {
return result;
}
if (resultBeforeTransform) {
console.debug("Received", resultBeforeTransform, "but could not parse as a valid result");
}
return null;
}
function fetchJson(endpoint, attrs) {
attrs = attrs || {};
if (!attrs.headers)
attrs.headers = {};
attrs.headers["Accept"] = "application/json";
attrs.headers["Content-Type"] = "application/json";
const method = (attrs.method || "GET").toUpperCase();
if (attrs.payload) {
if (method === "GET") {
endpoint = extendUrlWithParameters(endpoint, attrs.payload);
} else {
attrs.body = JSON.stringify(attrs.payload);
}
}
return fetch(endpoint, attrs).then((response) => {
if (response.ok) {
return response.json();
} else {
throw new Error(`Could not fetch ${endpoint}: ${response}`);
}
});
}
function jsonResponseFromStreamChunk(supposedlyJsonContent, failedParseContent) {
let jsonResponse;
const testContent = supposedlyJsonContent.replace(/^data:\s?/, "").trim();
try {
jsonResponse = JSON.parse(testContent);
} catch (e) {
if (failedParseContent) {
try {
jsonResponse = JSON.parse(failedParseContent + testContent);
} catch (err) {
return { failedParseContent: failedParseContent + testContent };
}
} else {
const jsonStart = testContent.indexOf("{");
if (jsonStart) {
try {
jsonResponse = JSON.parse(testContent.substring(jsonStart));
return { failedParseContent: null, jsonResponse };
} catch (err) {
console.debug("Moving start position didn't fix JSON parse error");
}
}
return { failedParseContent: testContent };
}
}
return { failedParseContent: null, jsonResponse };
}
async function responseTextFromStreamResponse(app, response, aiModel, responseJsonExpected, streamCallback) {
if (typeof global !== "undefined" && typeof global.fetch !== "undefined") {
return await streamIsomorphicFetch(app, response, aiModel, responseJsonExpected, streamCallback);
} else {
return await streamWindowFetch(app, response, aiModel, responseJsonExpected, streamCallback);
}
}
async function streamIsomorphicFetch(app, response, aiModel, responseJsonExpected, callback) {
const responseBody = response.body;
let abort = false;
let receivedContent = "";
let failedParseContent, incrementalContents;
await new Promise((resolve, _reject) => {
const readStream = () => {
let failLoops = 0;
const processChunk = () => {
const chunk = responseBody.read();
if (chunk) {
failLoops = 0;
const decoded = chunk.toString();
const responseObject = callback(app, decoded, receivedContent, aiModel, responseJsonExpected, failedParseContent);
({ abort, failedParseContent, incrementalContents, receivedContent } = responseObject);
if (abort || !shouldContinueStream(incrementalContents, receivedContent)) {
resolve();
return;
}
processChunk();
} else {
failLoops += 1;
if (failLoops < 3) {
setTimeout(processChunk, streamTimeoutSeconds * 1e3);
} else {
resolve();
}
}
};
processChunk();
};
responseBody.on("readable", readStream);
});
return receivedContent;
}
async function streamWindowFetch(app, response, aiModel, responseJsonExpected, callback) {
const reader = response.body.getReader();
const decoder = new TextDecoder();
let abort, error, failedParseContent, incrementalContents;
let failLoops = 0;
let receivedContent = "";
while (!error) {
let value = null, done = false;
try {
await Promise.race([
{ done, value } = await reader.read(),
new Promise(
(_, reject) => setTimeout(() => reject(new Error("Timeout")), streamTimeoutSeconds * 1e3)
)
]);
} catch (e) {
error = e;
console.log(`Failed to receive further stream data in time`, e);
break;
}
if (done || failLoops > 3) {
console.debug("Completed generating response length");
break;
} else if (value) {
const decodedValue = decoder.decode(value, { stream: true });
try {
if (typeof decodedValue === "string") {
failLoops = 0;
const response2 = callback(app, decodedValue, receivedContent, aiModel, responseJsonExpected, failedParseContent);
if (response2) {
({ abort, failedParseContent, incrementalContents, receivedContent } = response2);
console.log("incrementalContent", incrementalContents, "receivedContent", receivedContent);
if (abort)
break;
if (!shouldContinueStream(incrementalContents, receivedContent))
break;
} else {
console.error("Failed to parse stream from", value, "as JSON");
failLoops += 1;
}
} else {
console.error("Failed to parse stream from", value, "as JSON");
failLoops += 1;
}
} catch (error2) {
console.error("There was an error parsing the response from stream:", error2);
break;
}
} else {
failLoops += 1;
}
}
return receivedContent;
}
function shouldContinueStream(chunkStrings, accumulatedResponse) {
let tooMuchSpace;
if (chunkStrings?.length && (accumulatedResponse?.length || 0) >= MAX_SPACES_ABORT_RESPONSE) {
const sansNewlines = accumulatedResponse.replace(/\n/g, " ");
tooMuchSpace = sansNewlines.substring(sansNewlines.length - MAX_SPACES_ABORT_RESPONSE).trim() === "";
if (tooMuchSpace)
console.debug("Response exceeds empty space threshold. Aborting");
}
return !tooMuchSpace;
}
function extendUrlWithParameters(basePath, paramObject) {
let path = basePath;
if (basePath.indexOf("?") !== -1) {
path += "&";
} else {
path += "?";
}
function deepSerialize(object, prefix) {
const keyValues = [];
for (let property in object) {
if (object.hasOwnProperty(property)) {
const key = prefix ? prefix + "[" + property + "]" : property;
const value = object[property];
keyValues.push(
value !== null && typeof value === "object" ? deepSerialize(value, key) : encodeURIComponent(key) + "=" + encodeURIComponent(value)
);
}
}
return keyValues.join("&");
}
path += deepSerialize(paramObject);
return path;
}
 
// lib/fetch-ollama.js
async function callOllama(plugin2, app, model, messages, promptKey, allowResponse, modelsQueried = []) {
const stream = shouldStream(plugin2);
const jsonEndpoint = isJsonPrompt(promptKey);
let response;
const streamCallback = stream ? streamAccumulate.bind(null, modelsQueried, promptKey) : null;
if (jsonEndpoint) {
response = await responsePromiseFromGenerate(
app,
messages,
model,
promptKey,
streamCallback,
allowResponse,
plugin2.constants.requestTimeoutSeconds
);
} else {
response = await responseFromChat(
app,
messages,
model,
promptKey,
streamCallback,
allowResponse,
plugin2.constants.requestTimeoutSeconds,
{ isTestEnvironment: plugin2.isTestEnvironment }
);
}
console.debug("Ollama", model, "model sez:\n", response);
return response;
}
async function ollamaAvailableModels(plugin2, alertOnEmptyApp = null) {
try {
const json = await fetchJson(`${OLLAMA_URL}/api/tags`);
if (!json)
return null;
if (json?.models?.length) {
const availableModels = json.models.map((m) => m.name);
const transformedModels = availableModels.map((m) => m.split(":")[0]);
const uniqueModels = transformedModels.filter((value, index, array) => array.indexOf(value) === index);
const sortedModels = uniqueModels.sort((a, b) => {
const aValue = OLLAMA_MODEL_PREFERENCES.indexOf(a) === -1 ? 10 : OLLAMA_MODEL_PREFERENCES.indexOf(a);
const bValue = OLLAMA_MODEL_PREFERENCES.indexOf(b) === -1 ? 10 : OLLAMA_MODEL_PREFERENCES.indexOf(b);
return aValue - bValue;
});
console.debug("Ollama reports", availableModels, "available models, transformed to", sortedModels);
return sortedModels;
} else {
if (alertOnEmptyApp) {
if (Array.isArray(json?.models)) {
alertOnEmptyApp.alert("Ollama is running but no LLMs are reported as available. Have you Run 'ollama run mistral' yet?");
} else {
alertOnEmptyApp.alert(`Unable to fetch Ollama models. Was Ollama started with "OLLAMA_ORIGINS=https://plugins.amplenote.com ollama serve"?`);
}
}
return null;
}
} catch (error) {
console.log("Error trying to fetch Ollama versions: ", error, "Are you sure Ollama was started with 'OLLAMA_ORIGINS=https://plugins.amplenote.com ollama serve'");
}
}
async function responseFromChat(app, messages, model, promptKey, streamCallback, allowResponse, timeoutSeconds, { isTestEnvironment = false } = {}) {
if (isTestEnvironment)
console.log("Calling Ollama with", model, "and streamCallback", streamCallback);
let response;
try {
await Promise.race([
response = await fetch(`${OLLAMA_URL}/api/chat`, {
body: JSON.stringify({ model, messages, stream: !!streamCallback }),
method: "POST"
}),
new Promise((_, reject) => setTimeout(() => reject(new Error("Ollama Generate Timeout")), timeoutSeconds * 1e3))
]);
} catch (e) {
throw e;
}
if (response?.ok) {
return await responseFromStreamOrChunk(app, response, model, promptKey, streamCallback, allowResponse, { timeoutSeconds });
} else {
throw new Error("Failed to call Ollama with", model, messages, "and stream", !!streamCallback, "response was", response, "at", /* @__PURE__ */ new Date());
}
}
async function responsePromiseFromGenerate(app, messages, model, promptKey, streamCallback, allowResponse, timeoutSeconds) {
const jsonQuery = jsonFromMessages(messages);
jsonQuery.model = model;
jsonQuery.stream = !!streamCallback;
let response;
try {
await Promise.race([
response = await fetch(`${OLLAMA_URL}/api/generate`, {
body: JSON.stringify(jsonQuery),
method: "POST"
}),
new Promise(
(_, reject) => setTimeout(() => reject(new Error("Ollama Generate Timeout")), timeoutSeconds * 1e3)
)
]);
} catch (e) {
throw e;
}
return await responseFromStreamOrChunk(
app,
response,
model,
promptKey,
streamCallback,
allowResponse,
{ timeoutSeconds }
);
}
function streamAccumulate(modelsQueriedArray, promptKey, app, decodedValue, receivedContent, aiModel, jsonResponseExpected, failedParseContent) {
let jsonResponse, content = "";
const responses = decodedValue.replace(/}\s*\n\{/g, "} \n{").split(" \n");
const incrementalContents = [];
for (const response of responses) {
const parseableJson = response.replace(/"\n/, `"\\n`).replace(/"""/, `"\\""`);
({ failedParseContent, jsonResponse } = jsonResponseFromStreamChunk(parseableJson, failedParseContent));
if (jsonResponse) {
const responseContent = jsonResponse.message?.content || jsonResponse.response;
if (responseContent) {
incrementalContents.push(responseContent);
content += responseContent;
} else {
console.debug("No response content found. Response", response, "\nParses to", parseableJson, "\nWhich yields JSON received", jsonResponse);
}
}
if (content) {
receivedContent += content;
const userSelection = app.alert(receivedContent, {
actions: [{ icon: "pending", label: "Generating response" }],
preface: streamPrefaceString(aiModel, modelsQueriedArray, promptKey, jsonResponseExpected),
scrollToEnd: true
});
if (userSelection === 0) {
console.error("User chose to abort stream. Todo: return abort here?");
}
} else if (failedParseContent) {
console.debug("Attempting to parse yielded failure. Received content so far is", receivedContent, "this stream deduced", responses.length, "responses");
}
}
return { abort: jsonResponse.done, failedParseContent, incrementalContents, receivedContent };
}
 
// lib/prompts.js
var PROMPT_KEYS = [
"answer",
"answerSelection",
"complete",
"reviseContent",
"reviseText",
"rhyming",
"sortGroceriesText",
"sortGroceriesJson",
"suggestTasks",
"summarize",
"thesaurus"
];
async function contentfulPromptParams(app, noteUUID, promptKey, promptKeyParams, aiModel, { contentIndex = null, contentIndexText = null, inputLimit = null } = {}) {
let noteContent = "", noteName = "";
if (!inputLimit)
inputLimit = isModelOllama(aiModel) ? OLLAMA_TOKEN_CHARACTER_LIMIT : openAiTokenLimit(aiModel);
if (noteUUID) {
const note = await app.notes.find(noteUUID);
noteContent = await note.content();
noteName = note.name;
}
if (!Number.isInteger(contentIndex) && contentIndexText && noteContent) {
contentIndex = contentIndexFromParams(contentIndexText, noteContent);
}
let boundedContent = noteContent || "";
const longContent = useLongContentContext(promptKey);
const noteContentCharacterLimit = Math.min(inputLimit * 0.5, longContent ? 5e3 : 1e3);
boundedContent = boundedContent.replace(/<!--\s\{[^}]+\}\s-->/g, "");
if (noteContent && noteContent.length > noteContentCharacterLimit) {
boundedContent = relevantContentFromContent(noteContent, contentIndex, noteContentCharacterLimit);
}
const limitedLines = limitContextLines(aiModel, promptKey);
if (limitedLines && Number.isInteger(contentIndex)) {
boundedContent = relevantLinesFromContent(boundedContent, contentIndex);
}
return { ...promptKeyParams, noteContent: boundedContent, noteName };
}
function promptsFromPromptKey(promptKey, promptParams, rejectedResponses, aiModel) {
let messages = [];
if (tooDumbForExample(aiModel)) {
promptParams = { ...promptParams, suppressExample: true };
}
messages.push({ role: "system", content: systemPromptFromPromptKey(promptKey) });
const userPrompt = userPromptFromPromptKey(promptKey, promptParams);
if (Array.isArray(userPrompt)) {
userPrompt.forEach((content) => {
messages.push({ role: "user", content: truncate(content) });
});
} else {
messages.push({ role: "user", content: truncate(userPrompt) });
}
const substantiveRejectedResponses = rejectedResponses?.filter((rejectedResponse) => rejectedResponse?.length > 0);
if (substantiveRejectedResponses?.length) {
let message = REJECTED_RESPONSE_PREFIX;
substantiveRejectedResponses.forEach((rejectedResponse) => {
message += `* ${rejectedResponse}
`;
});
const multiple = substantiveRejectedResponses.length > 1;
message += `
Do NOT repeat ${multiple ? "any" : "the"} rejected response, ${multiple ? "these are" : "this is"} the WRONG RESPONSE.`;
messages.push({ role: "user", content: message });
}
return messages;
}
var SYSTEM_PROMPTS = {
defaultPrompt: "You are a helpful assistant that responds with markdown-formatted content.",
reviseContent: "You are a helpful assistant that revises markdown-formatted content, as instructed.",
reviseText: "You are a helpful assistant that revises text, as instructed.",
rhyming: "You are a helpful rhyming word generator that responds in JSON with an array of rhyming words",
sortGroceriesJson: "You are a helpful assistant that responds in JSON with sorted groceries using the 'instruction' key as a guide",
suggestTasks: "You are a Fortune 100 CEO that returns an array of insightful tasks within the 'result' key of a JSON response",
summarize: "You are a helpful assistant that summarizes notes that are markdown-formatted.",
thesaurus: "You are a helpful thesaurus that responds in JSON with an array of alternate word choices that fit the context provided"
};
function messageArrayFromPrompt(promptKey, promptParams) {
if (!PROMPT_KEYS.includes(promptKey))
throw `Please add "${promptKey}" to PROMPT_KEYS array`;
const userPrompts = {
answer: ({ instruction }) => [
`Succinctly answer the following question: ${instruction}`,
"Do not explain your answer. Do not mention the question that was asked. Do not include unnecessary punctuation."
],
answerSelection: ({ text }) => [text],
complete: ({ noteContent }) => `Continue the following markdown-formatted content:
 
${noteContent}`,
reviseContent: ({ noteContent, instruction }) => [instruction, noteContent],
reviseText: ({ instruction, text }) => [instruction, text],
rhyming: ({ noteContent, text }) => [
JSON.stringify({
instruction: `Respond with a JSON object containing ONLY ONE KEY called "result", that contains a JSON array of up to 10 rhyming words or phrases`,
rhymesWith: text,
rhymingWordContext: noteContent.replace(text, `<replace>${text}</replace>`),
example: { input: { rhymesWith: "you" }, response: { result: ["knew", "blue", "shoe", "slew", "shrew", "debut", "voodoo", "field of view", "kangaroo", "view"] } }
})
],
sortGroceriesText: ({ groceryArray }) => [
`Sort the following list of groceries by where it can be found in the grocery store:`,
`- [ ] ${groceryArray.join(`
- [ ]`)}`,
`Prefix each grocery aisle (each task section) with a "# ".
 
For example, if the input groceries were "Bananas", "Donuts", and "Bread", then the correct answer would be "# Produce
[ ] Bananas
 
# Bakery
[ ] Donuts
[ ] Bread"`,
`DO NOT RESPOND WITH ANY EXPLANATION, only groceries and aisles. Return the exact same ${groceryArray.length} groceries provided in the array, without additions or subtractions.`
],
sortGroceriesJson: ({ groceryArray }) => [
JSON.stringify({
instruction: `Respond with a JSON object, where the key is the aisle/department in which a grocery can be found, and the value is the array of groceries that can be found in that aisle/department.
 
Return the EXACT SAME ${groceryArray.length} groceries from the "groceries" key, without additions or subtractions.`,
groceries: groceryArray,
example: {
input: { groceries: [" Bananas", "Donuts", "Grapes", "Bread", "salmon fillets"] },
response: { "Produce": ["Bananas", "Grapes"], "Bakery": ["Donuts", "Bread"], "Seafood": ["salmon fillets"] }
}
})
],
suggestTasks: ({ chosenTasks, noteContent, noteName, text }) => {
const queryJson = {
instruction: `Respond with a JSON object that contains an array of 10 tasks that will be inserted at the <inserTasks> token in the provided markdown content`,
taskContext: `Title: ${noteName}
 
Content:
${noteContent.replace(text, `<insertTasks>`)}`,
example: {
input: { taskContext: `Title: Clean the house
 
Content:
- [ ] Mop the floors
<insertTasks>` },
response: {
result: [
"Dust the living room furniture",
"Fold and put away the laundry",
"Water indoor plants",
"Hang up any recent mail",
"Fold and put away laundry",
"Take out the trash & recycling",
"Wipe down bathroom mirrors & counter",
"Sweep the entry and porch",
"Organize the pantry",
"Vacuum"
]
}
}
};
if (chosenTasks) {
queryJson.alreadyAcceptedTasks = `The following tasks have been proposed and accepted already. DO NOT REPEAT THESE, but do suggest complementary tasks:
* ${chosenTasks.join("\n * ")}`;
}
return JSON.stringify(queryJson);
},
summarize: ({ noteContent }) => `Summarize the following markdown-formatted note:
 
${noteContent}`,
thesaurus: ({ noteContent, text }) => [
JSON.stringify({
instruction: `Respond with a JSON object containing ONLY ONE KEY called "result". The value for the "result" key should be a 10-element array of the best words or phrases to replace "${text}" while remaining consistent with the included "replaceWordContext" markdown document.`,
replaceWord: text,
replaceWordContext: noteContent.replace(text, `<replaceWord>${text}</replaceWord>`),
example: {
input: { replaceWord: "helpful", replaceWordContext: "Mother always said that I should be <replaceWord>helpful</replaceWord> with my coworkers" },
response: { result: ["useful", "friendly", "constructive", "cooperative", "sympathetic", "supportive", "kind", "considerate", "beneficent", "accommodating"] }
}
})
]
};
return userPrompts[promptKey]({ ...promptParams });
}
function userPromptFromPromptKey(promptKey, promptParams) {
let userPrompts;
if (["continue", "insertTextComplete", "replaceTextComplete"].find((key) => key === promptKey)) {
const { noteContent } = promptParams;
let tokenAndSurroundingContent;
if (promptKey === "replaceTextComplete") {
tokenAndSurroundingContent = promptParams.text;
} else {
const replaceToken = promptKey === "insertTextComplete" ? `${PLUGIN_NAME}: Complete` : `${PLUGIN_NAME}: Continue`;
console.debug("Note content", noteContent, "replace token", replaceToken);
tokenAndSurroundingContent = `~~~
${noteContent.replace(`{${replaceToken}}`, "<replaceToken>")}
~~~`;
}
userPrompts = [
`Respond with text that will replace <replaceToken> in the following input markdown document, delimited by ~~~:`,
tokenAndSurroundingContent,
`Your response should be grammatically correct and not repeat the markdown document. DO NOT explain your answer.`,
`Most importantly, DO NOT respond with <replaceToken> itself and DO NOT repeat word sequences from the markdown document. BE CONCISE.`
];
} else {
userPrompts = messageArrayFromPrompt(promptKey, promptParams);
if (promptParams.suppressExample && userPrompts[0]?.includes("example")) {
try {
const json = JSON.parse(userPrompts[0]);
delete json.example;
userPrompts[0] = JSON.stringify(json);
} catch (e) {
}
}
}
console.debug("Got user messages", userPrompts, "for", promptKey, "given promptParams", promptParams);
return userPrompts;
}
function relevantContentFromContent(content, contentIndex, contentLimit) {
if (content && content.length > contentLimit) {
if (!Number.isInteger(contentIndex)) {
const pluginNameIndex = content.indexOf(PLUGIN_NAME);
contentIndex = pluginNameIndex === -1 ? contentLimit * 0.5 : pluginNameIndex;
}
const startIndex = Math.max(0, Math.round(contentIndex - contentLimit * 0.75));
const endIndex = Math.min(content.length, Math.round(contentIndex + contentLimit * 0.25));
content = content.substring(startIndex, endIndex);
}
return content;
}
function relevantLinesFromContent(content, contentIndex) {
const maxContextLines = 4;
const lines = content.split("\n").filter((l) => l.length);
if (lines.length > maxContextLines) {
let traverseChar = 0;
let targetContentLine = lines.findIndex((line) => {
if (traverseChar + line.length > contentIndex)
return true;
traverseChar += line.length + 1;
});
if (targetContentLine >= 0) {
const startLine = Math.max(0, targetContentLine - Math.floor(maxContextLines * 0.75));
const endLine = Math.min(lines.length, targetContentLine + Math.floor(maxContextLines * 0.25));
console.debug("Submitting line index", startLine, "through", endLine, "of", lines.length, "lines");
content = lines.slice(startLine, endLine).join("\n");
}
}
return content;
}
function systemPromptFromPromptKey(promptKey) {
const systemPrompts = SYSTEM_PROMPTS;
return systemPrompts[promptKey] || systemPrompts.defaultPrompt;
}
function contentIndexFromParams(contentIndexText, noteContent) {
let contentIndex = null;
if (contentIndexText) {
contentIndex = noteContent.indexOf(contentIndexText);
}
if (contentIndex === -1)
contentIndex = null;
return contentIndex;
}
 
// lib/openai-functions.js
function toolsValueFromPrompt(promptKey) {
let openaiFunction;
switch (promptKey) {
case "rhyming":
case "thesaurus":
const description = promptKey === "rhyming" ? "Array of 10 contextually relevant rhyming words" : "Array of 10 contextually relevant alternate words";
openaiFunction = {
"type": "function",
"function": {
"name": `calculate_${promptKey}_array`,
"description": `Return the best ${promptKey} responses`,
"parameters": {
"type": "object",
"properties": {
"result": {
"type": "array",
"description": description,
"items": {
"type": "string"
}
}
},
"required": ["result"]
}
}
};
}
if (openaiFunction) {
return [openaiFunction];
} else {
return null;
}
}
 
// lib/openai-settings.js
async function apiKeyFromAppOrUser(plugin2, app) {
const apiKey = apiKeyFromApp(plugin2, app) || await apiKeyFromUser(plugin2, app);
if (!apiKey) {
app.alert("Couldn't find a valid OpenAI API key. An OpenAI account is necessary to generate images.");
return null;
}
return apiKey;
}
function apiKeyFromApp(plugin2, app) {
if (app.settings[plugin2.constants.labelApiKey]) {
return app.settings[plugin2.constants.labelApiKey].trim();
} else if (app.settings["API Key"]) {
const deprecatedKey = app.settings["API Key"].trim();
app.setSetting(plugin2.constants.labelApiKey, deprecatedKey);
return deprecatedKey;
} else {
if (plugin2.constants.isTestEnvironment) {
throw new Error(`Couldnt find an OpenAI key in ${plugin2.constants.labelApiKey}`);
} else {
app.alert("Please configure your OpenAI key in plugin settings.");
}
return null;
}
}
async function apiKeyFromUser(plugin2, app) {
const apiKey = await app.prompt(OPENAI_API_KEY_TEXT);
if (apiKey) {
app.setSetting(plugin2.constants.labelApiKey, apiKey);
}
return apiKey;
}
 
// lib/fetch-openai.js
async function callOpenAI(plugin2, app, model, messages, promptKey, allowResponse, modelsQueried = []) {
model = model?.trim()?.length ? model : DEFAULT_OPENAI_MODEL;
const tools = toolsValueFromPrompt(promptKey);
const streamCallback = shouldStream(plugin2) ? streamAccumulate2.bind(null, modelsQueried, promptKey) : null;
try {
return await requestWithRetry(
app,
model,
messages,
tools,
apiKeyFromApp(plugin2, app),
promptKey,
streamCallback,
allowResponse,
{ timeoutSeconds: plugin2.constants.requestTimeoutSeconds }
);
} catch (error) {
if (plugin2.isTestEnvironment) {
console.error("Failed to call OpenAI", error);
} else {
app.alert("Failed to call OpenAI: " + error);
}
return null;
}
}
async function requestWithRetry(app, model, messages, tools, apiKey, promptKey, streamCallback, allowResponse, {
retries = 3,
timeoutSeconds = 30
} = {}) {
let error, response;
if (!apiKey?.length) {
app.alert("Please configure your OpenAI key in plugin settings.");
return null;
}
const jsonResponseExpected = isJsonPrompt(promptKey);
for (let i = 0; i < retries; i++) {
if (i > 0)
console.debug(`Loop ${i + 1}: Retrying ${model} with ${promptKey}`);
try {
const body = { model, messages, stream: !!streamCallback };
if (tools)
body.tools = tools;
body.frequency_penalty = frequencyPenaltyFromPromptKey(promptKey);
if (jsonResponseExpected && (model.includes("gpt-4") || model.includes("gpt-3.5-turbo-1106"))) {
body.response_format = { type: "json_object" };
}
console.debug("Sending OpenAI", body, "query at", /* @__PURE__ */ new Date());
response = await Promise.race([
fetch("https://api.openai.com/v1/chat/completions", {
method: "POST",
headers: {
"Authorization": `Bearer ${apiKey}`,
"Content-Type": "application/json"
},
body: JSON.stringify(body)
}),
new Promise(
(_, reject) => setTimeout(() => reject(new Error("Timeout")), timeoutSeconds * 1e3)
)
]);
} catch (e) {
error = e;
console.log(`Attempt ${i + 1} failed with`, e, `at ${/* @__PURE__ */ new Date()}. Retrying...`);
}
if (response?.ok) {
break;
}
}
console.debug("Response from promises is", response, "specifically response?.ok", response?.ok);
if (response?.ok) {
return await responseFromStreamOrChunk(app, response, model, promptKey, streamCallback, allowResponse, { timeoutSeconds });
} else if (!response) {
app.alert("Failed to call OpenAI: " + error);
return null;
} else if (response.status === 401) {
app.alert("Invalid OpenAI key. Please configure your OpenAI key in plugin settings.");
return null;
} else {
const result = await response.json();
if (result && result.error) {
app.alert("Failed to call OpenAI: " + result.error.message);
return null;
}
}
}
function streamAccumulate2(modelsQueriedArray, promptKey, app, decodedValue, receivedContent, aiModel, jsonResponseExpected, failedParseContent) {
let stop = false, jsonResponse;
const responses = decodedValue.split(/^data: /m).filter((s) => s.trim().length);
const incrementalContents = [];
for (const jsonString of responses) {
if (jsonString.includes("[DONE]")) {
console.debug("Received [DONE] from jsonString");
stop = true;
break;
}
({ failedParseContent, jsonResponse } = jsonResponseFromStreamChunk(jsonString, failedParseContent));
if (jsonResponse) {
const content = jsonResponse.choices?.[0]?.delta?.content || jsonResponse.choices?.[0]?.delta?.tool_calls?.[0]?.function?.arguments;
if (content) {
incrementalContents.push(content);
receivedContent += content;
app.alert(receivedContent, {
actions: [{ icon: "pending", label: "Generating response" }],
preface: streamPrefaceString(aiModel, modelsQueriedArray, promptKey, jsonResponseExpected),
scrollToEnd: true
});
} else {
stop = !!jsonResponse?.finish_reason?.length || !!jsonResponse?.choices?.[0]?.finish_reason?.length;
if (stop) {
console.log("Finishing stream for reason", jsonResponse?.finish_reason || jsonResponse?.choices?.[0]?.finish_reason);
break;
}
}
}
}
return { abort: stop, failedParseContent, incrementalContents, receivedContent };
}
 
// lib/model-picker.js
var MAX_CANDIDATE_MODELS = 3;
async function notePromptResponse(plugin2, app, noteUUID, promptKey, promptParams, {
preferredModels = null,
confirmInsert = true,
contentIndex = null,
rejectedResponses = null,
allowResponse = null,
contentIndexText
} = {}) {
preferredModels = preferredModels || await recommendedAiModels(plugin2, app, promptKey);
if (!preferredModels.length)
return;
const startAt = /* @__PURE__ */ new Date();
const { response, modelUsed } = await sendQuery(
plugin2,
app,
noteUUID,
promptKey,
promptParams,
{ allowResponse, contentIndex, contentIndexText, preferredModels, rejectedResponses }
);
if (response === null) {
app.alert("Failed to receive a usable response from AI");
console.error("No result was returned from sendQuery with models", preferredModels);
return;
}
if (confirmInsert) {
const actions = [];
preferredModels.forEach((model) => {
const modelLabel = model.split(":")[0];
actions.push({ icon: "chevron_right", label: `Try ${modelLabel}${model === modelUsed ? " again" : ""}` });
});
const primaryAction = { icon: "check_circle", label: "Approve" };
let responseAsText = response, jsonResponse = false;
if (typeof response === "object") {
if (response.result?.length) {
responseAsText = "Results:\n* " + response.result.join("\n * ");
} else {
jsonResponse = true;
responseAsText = JSON.stringify(response);
}
}
const selectedValue = await app.alert(responseAsText, {
actions,
preface: `${jsonResponse ? "JSON response s" : "S"}uggested by ${modelUsed}
Will be utilized after your preliminary approval`,
primaryAction
});
console.debug("User chose", selectedValue, "from", actions);
if (selectedValue === -1) {
return response;
} else if (preferredModels[selectedValue]) {
const preferredModel = preferredModels[selectedValue];
const updatedRejects = rejectedResponses || [];
updatedRejects.push(responseAsText);
preferredModels = [preferredModel, ...preferredModels.filter((model) => model !== preferredModel)];
console.debug("User chose to try", preferredModel, "next so preferred models are", preferredModels, "Rejected responses now", updatedRejects);
return await notePromptResponse(plugin2, app, noteUUID, promptKey, promptParams, {
confirmInsert,
contentIndex,
preferredModels,
rejectedResponses: updatedRejects
});
} else if (Number.isInteger(selectedValue)) {
app.alert(`Did not recognize your selection "${selectedValue}"`);
}
} else {
const secondsUsed = Math.floor((/* @__PURE__ */ new Date() - startAt) / 1e3);
app.alert(`Finished generating ${response} response with ${modelUsed} in ${secondsUsed} second${secondsUsed === 1 ? "" : "s"}`);
return response;
}
}
async function recommendedAiModels(plugin2, app, promptKey) {
let candidateAiModels = [];
if (app.settings[plugin2.constants.labelAiModel]?.trim()) {
candidateAiModels = app.settings[plugin2.constants.labelAiModel].trim().split(",").map((w) => w.trim()).filter((n) => n);
}
if (plugin2.lastModelUsed && (!isModelOllama(plugin2.lastModelUsed) || plugin2.ollamaModelsFound?.includes(plugin2.lastModelUsed))) {
candidateAiModels.push(plugin2.lastModelUsed);
}
if (!plugin2.noFallbackModels) {
const ollamaModels = plugin2.ollamaModelsFound || await ollamaAvailableModels(plugin2, app);
if (ollamaModels && !plugin2.ollamaModelsFound) {
plugin2.ollamaModelsFound = ollamaModels;
}
candidateAiModels = includingFallbackModels(plugin2, app, candidateAiModels);
if (!candidateAiModels.length) {
candidateAiModels = await aiModelFromUserIntervention(plugin2, app);
if (!candidateAiModels?.length)
return null;
}
}
if (["sortGroceriesJson"].includes(promptKey)) {
candidateAiModels = candidateAiModels.filter((m) => m.includes("gpt-4"));
}
return candidateAiModels.slice(0, MAX_CANDIDATE_MODELS);
}
async function sendQuery(plugin2, app, noteUUID, promptKey, promptParams, {
contentIndex = null,
contentIndexText = null,
preferredModels = null,
rejectedResponses = null,
allowResponse = null
} = {}) {
preferredModels = (preferredModels || await recommendedAiModels(plugin2, app, promptKey)).filter((n) => n);
console.debug("Starting to query", promptKey, "with preferredModels", preferredModels);
let modelsQueried = [];
for (const aiModel of preferredModels) {
const queryPromptParams = await contentfulPromptParams(
app,
noteUUID,
promptKey,
promptParams,
aiModel,
{ contentIndex, contentIndexText }
);
const messages = promptsFromPromptKey(promptKey, queryPromptParams, rejectedResponses, aiModel);
let response;
plugin2.callCountByModel[aiModel] = (plugin2.callCountByModel[aiModel] || 0) + 1;
plugin2.lastModelUsed = aiModel;
modelsQueried.push(aiModel);
try {
response = await responseFromPrompts(plugin2, app, aiModel, promptKey, messages, { allowResponse, modelsQueried });
} catch (e) {
console.error("Caught exception trying to make call with", aiModel, e);
}
if (response && (!allowResponse || allowResponse(response))) {
return { response, modelUsed: aiModel };
} else {
plugin2.errorCountByModel[aiModel] = (plugin2.errorCountByModel[aiModel] || 0) + 1;
console.error("Failed to make call with", aiModel, "response", response, "while messages are", messages, "Error counts", plugin2.errorCountByModel);
}
}
if (modelsQueried.length && modelsQueried.find((m) => isModelOllama(m))) {
const availableModels = await ollamaAvailableModels(plugin2, app);
plugin2.ollamaModelsFound = availableModels;
console.debug("Found availableModels", availableModels, "after receiving no results in sendQuery. plugin.ollamaModelsFound is now", plugin2.ollamaModelsFound);
}
plugin2.lastModelUsed = null;
return { response: null, modelUsed: null };
}
function responseFromPrompts(plugin2, app, aiModel, promptKey, messages, { allowResponse = null, modelsQueried = null } = {}) {
if (isModelOllama(aiModel)) {
return callOllama(plugin2, app, aiModel, messages, promptKey, allowResponse, modelsQueried);
} else {
return callOpenAI(plugin2, app, aiModel, messages, promptKey, allowResponse, modelsQueried);
}
}
function includingFallbackModels(plugin2, app, candidateAiModels) {
if (app.settings[OPENAI_KEY_LABEL]?.length && !candidateAiModels.find((m) => m === DEFAULT_OPENAI_MODEL)) {
candidateAiModels = candidateAiModels.concat(DEFAULT_OPENAI_MODEL);
} else if (!app.settings[OPENAI_KEY_LABEL]?.length) {
console.error("No OpenAI key found in", OPENAI_KEY_LABEL, "setting");
} else if (candidateAiModels.find((m) => m === DEFAULT_OPENAI_MODEL)) {
console.debug("Already an OpenAI model among candidates,", candidateAiModels.find((m) => m === DEFAULT_OPENAI_MODEL));
}
if (plugin2.ollamaModelsFound?.length) {
candidateAiModels = candidateAiModels.concat(plugin2.ollamaModelsFound.filter((m) => !candidateAiModels.includes(m)));
}
console.debug("Ended with", candidateAiModels);
return candidateAiModels;
}
async function aiModelFromUserIntervention(plugin2, app, { optionSelected = null } = {}) {
optionSelected = optionSelected || await app.prompt(NO_MODEL_FOUND_TEXT, {
inputs: [
{
type: "radio",
label: "Which model would you prefer to use?",
options: [
{ label: "OpenAI: best for most users. Offers image generation", value: "openai" },
{ label: "Ollama: best for experts who want high customization, or a free option)", value: "ollama" }
],
value: "openai"
}
]
});
if (optionSelected === "openai") {
const openaiKey = await app.prompt(OPENAI_API_KEY_TEXT);
if (openaiKey && openaiKey.length >= MIN_OPENAI_KEY_CHARACTERS) {
app.setSetting(plugin2.constants.labelApiKey, openaiKey.trim());
await app.alert(`An OpenAI was successfully stored. The default OpenAI model, "${DEFAULT_OPENAI_MODEL}", will be used for future AI lookups.`);
return [DEFAULT_OPENAI_MODEL];
} else {
console.debug("User entered invalid OpenAI key");
const nextStep = await app.alert(OPENAI_INVALID_KEY_TEXT, { actions: [
{ icon: "settings", label: "Retry entering key" }
] });
console.debug("nextStep selected", nextStep);
if (nextStep === 0) {
return await aiModelFromUserIntervention(plugin2, app, { optionSelected });
}
return null;
}
} else if (optionSelected === "ollama") {
await app.alert(OLLAMA_INSTALL_TEXT);
return null;
}
}
 
// lib/functions/chat.js
async function initiateChat(plugin2, app, aiModels, messageHistory = []) {
let promptHistory;
if (messageHistory.length) {
promptHistory = messageHistory;
} else {
promptHistory = [{ content: "What's on your mind?", role: "assistant" }];
}
const modelsQueried = [];
while (true) {
const conversation = promptHistory.map((chat) => `${chat.role}: ${chat.content}`).join("\n\n");
console.debug("Prompting user for next message to send to", plugin2.lastModelUsed || aiModels[0]);
const [userMessage, modelToUse] = await app.prompt(conversation, {
inputs: [
{ type: "text", label: "Message to send" },
{
type: "radio",
label: "Send to",
options: aiModels.map((model) => ({ label: model, value: model })),
value: plugin2.lastModelUsed || aiModels[0]
}
]
}, { scrollToBottom: true });
if (modelToUse) {
promptHistory.push({ role: "user", content: userMessage });
modelsQueried.push(modelToUse);
const response = await responseFromPrompts(plugin2, app, modelToUse, "chat", promptHistory, { modelsQueried });
if (response) {
promptHistory.push({ role: "assistant", content: `[${modelToUse}] ${response}` });
const alertResponse = await app.alert(response, { preface: conversation, actions: [{ icon: "navigate_next", label: "Ask a follow up question" }] });
if (alertResponse === 0)
continue;
}
}
break;
}
console.debug("Finished chat with history", promptHistory);
}
 
// lib/functions/groceries.js
function groceryArrayFromContent(content) {
const lines = content.split("\n");
const groceryLines = lines.filter((line) => line.match(/^[-*\[]\s/));
const groceryArray = groceryLines.map((line) => optionWithoutPrefix(line).replace(/<!--.*-->/g, "").trim());
return groceryArray;
}
async function groceryContentFromJsonOrText(plugin2, app, noteUUID, groceryArray) {
const jsonModels = await recommendedAiModels(plugin2, app, "sortGroceriesJson");
if (jsonModels.length) {
const confirmation = groceryCountJsonConfirmation.bind(null, groceryArray.length);
const jsonGroceries = await notePromptResponse(
plugin2,
app,
noteUUID,
"sortGroceriesJson",
{ groceryArray },
{ allowResponse: confirmation }
);
if (typeof jsonGroceries === "object") {
return noteContentFromGroceryJsonResponse(jsonGroceries);
}
} else {
const sortedListContent = await notePromptResponse(
plugin2,
app,
noteUUID,
"sortGroceriesText",
{ groceryArray },
{ allowResponse: groceryCountTextConfirmation.bind(null, groceryArray.length) }
);
if (sortedListContent?.length) {
return noteContentFromGroceryTextResponse(sortedListContent);
}
}
}
function noteContentFromGroceryJsonResponse(jsonGroceries) {
let text = "";
for (const aisle of Object.keys(jsonGroceries)) {
const groceries = jsonGroceries[aisle];
text += `# ${aisle}
`;
groceries.forEach((grocery) => {
text += `- [ ] ${grocery}
`;
});
text += "\n";
}
return text;
}
function noteContentFromGroceryTextResponse(text) {
text = text.replace(/^[\\-]{3,100}/g, "");
text = text.replace(/^([-\\*]|\[\s\])\s/g, "- [ ] ");
text = text.replace(/^[\s]*```.*/g, "");
return text.trim();
}
function groceryCountJsonConfirmation(originalCount, proposedJson) {
if (!proposedJson || typeof proposedJson !== "object")
return false;
const newCount = Object.values(proposedJson).reduce((sum, array) => sum + array.length, 0);
console.debug("Original list had", originalCount, "items, AI-proposed list appears to have", newCount, "items", newCount === originalCount ? "Accepting response" : "Rejecting response");
return newCount === originalCount;
}
function groceryCountTextConfirmation(originalCount, proposedContent) {
if (!proposedContent?.length)
return false;
const newCount = proposedContent.match(/^[-*\s]*\[[\s\]]+[\w]/gm)?.length || 0;
console.debug("Original list had", originalCount, "items, AI-proposed list appears to have", newCount, "items", newCount === originalCount ? "Accepting response" : "Rejecting response");
return newCount === originalCount;
}
 
// lib/functions/image-generator.js
async function imageFromPreceding(plugin2, app, apiKey) {
const note = await app.notes.find(app.context.noteUUID);
const noteContent = await note.content();
const promptIndex = noteContent.indexOf(`{${plugin2.constants.pluginName}: ${IMAGE_FROM_PRECEDING_LABEL}`);
const precedingContent = noteContent.substring(0, promptIndex).trim();
const prompt = precedingContent.split("\n").pop();
console.debug("Deduced prompt", prompt);
if (prompt?.trim()) {
try {
const markdown = await imageMarkdownFromPrompt(plugin2, app, prompt.trim(), apiKey, { note });
if (markdown) {
app.context.replaceSelection(markdown);
}
} catch (e) {
console.error("Error generating images from preceding text", e);
app.alert("There was an error generating images from preceding text:" + e);
}
} else {
app.alert("Could not determine preceding text to use as a prompt");
}
}
async function imageFromPrompt(plugin2, app, apiKey) {
const instruction = await app.prompt(IMAGE_GENERATION_PROMPT);
if (!instruction)
return;
const note = await app.notes.find(app.context.noteUUID);
const markdown = await imageMarkdownFromPrompt(plugin2, app, instruction, apiKey, { note });
if (markdown) {
app.context.replaceSelection(markdown);
}
}
async function sizeModelFromUser(plugin2, app, prompt) {
const [sizeModel, style] = await app.prompt(`Generating image for "${prompt.trim()}"`, {
inputs: [
{
label: "Model & Size",
options: [
{ label: "Dall-e-2 3x 512x512", value: "512x512~dall-e-2" },
{ label: "Dall-e-2 3x 1024x1024", value: "1024x1024~dall-e-2" },
{ label: "Dall-e-3 1x 1024x1024", value: "1024x1024~dall-e-3" },
{ label: "Dall-e-3 1x 1792x1024", value: "1792x1024~dall-e-3" },
{ label: "Dall-e-3 1x 1024x1792", value: "1024x1792~dall-e-3" }
],
type: "radio",
value: plugin2.lastImageModel || DALL_E_DEFAULT
},
{
label: "Style - Used by Dall-e-3 models only (Optional)",
options: [
{ label: "Vivid (default)", value: "vivid" },
{ label: "Natural", value: "natural" }
],
type: "select",
value: "vivid"
}
]
});
plugin2.lastImageModel = sizeModel;
const [size, model] = sizeModel.split("~");
return [size, model, style];
}
async function imageMarkdownFromPrompt(plugin2, app, prompt, apiKey, { note = null } = {}) {
if (!prompt) {
app.alert("Couldn't find a prompt to generate image from");
return null;
}
const [size, model, style] = await sizeModelFromUser(plugin2, app, prompt);
const jsonBody = { prompt, model, n: model === "dall-e-2" ? 3 : 1, size };
if (style && model === "dall-e-3")
jsonBody.style = style;
app.alert(`Generating ${jsonBody.n} image${jsonBody.n === 1 ? "" : "s"} for "${prompt.trim()}"...`);
const response = await fetch("https://api.openai.com/v1/images/generations", {
method: "POST",
headers: { "Authorization": `Bearer ${apiKey}`, "Content-Type": "application/json" },
// As of Dec 2023, v3 can only generate one image per run
body: JSON.stringify(jsonBody)
});
const result = await response.json();
const { data } = result;
if (data?.length) {
const urls = data.map((d) => d.url);
console.debug("Received options", urls, "at", /* @__PURE__ */ new Date());
const radioOptions = urls.map((url) => ({ image: url, value: url }));
radioOptions.push({ label: "Regenerate image", value: "more" });
const chosenImageURL = await app.prompt(`Received ${urls.length} options`, {
inputs: [{
label: "Choose an image",
options: radioOptions,
type: "radio"
}]
});
if (chosenImageURL === "more") {
return imageMarkdownFromPrompt(plugin2, app, prompt, apiKey, { note });
} else if (chosenImageURL) {
console.debug("Fetching and uploading chosen URL", chosenImageURL);
const imageData = await fetchImageAsDataURL(chosenImageURL);
if (!note)
note = await app.notes.find(app.context.noteUUID);
const ampleImageUrl = await note.attachMedia(imageData);
return `![image](${ampleImageUrl})`;
}
return null;
} else {
return null;
}
}
async function fetchImageAsDataURL(url) {
const response = await fetch(`${CORS_PROXY}/${url}`);
const blob = await response.blob();
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.onload = (event) => {
resolve(event.target.result);
};
reader.onerror = function(event) {
reader.abort();
reject(event.target.error);
};
reader.readAsDataURL(blob);
});
}
 
// lib/functions/suggest-tasks.js
async function taskArrayFromSuggestions(plugin2, app, contentIndexText) {
const allowResponse = (response2) => {
const validJson = typeof response2 === "object" && (response2.result || response2.response?.result || response2.input?.response?.result || response2.input?.result);
const validString = typeof response2 === "string" && arrayFromResponseString(response2)?.length;
return validJson || validString;
};
const chosenTasks = [];
const response = await notePromptResponse(
plugin2,
app,
app.context.noteUUID,
"suggestTasks",
{},
{
allowResponse,
contentIndexText
}
);
if (response) {
let unchosenTasks = taskArrayFromResponse(response);
while (true) {
const promptOptions = unchosenTasks.map((t) => ({ label: t, value: t }));
if (!promptOptions.length)
break;
promptOptions.push({ label: "Add more tasks", value: "more" });
promptOptions.push({ label: "Done picking tasks", value: "done" });
const promptString = `Which tasks would you like to add to your note?` + (chosenTasks.length ? `
${chosenTasks.length} task${chosenTasks.length === 1 ? "" : "s"} will be inserted when you choose the "Done picking tasks" option` : "");
const insertTask = await app.prompt(promptString, {
inputs: [
{
label: "Choose tasks",
options: promptOptions,
type: "radio",
value: promptOptions[0].value
}
]
});
if (insertTask) {
if (insertTask === "done") {
break;
} else if (insertTask === "more") {
await addMoreTasks(plugin2, app, allowResponse, contentIndexText, chosenTasks, unchosenTasks);
} else {
chosenTasks.push(insertTask);
unchosenTasks = unchosenTasks.filter((task) => !chosenTasks.includes(task));
}
} else {
break;
}
}
} else {
app.alert("Could not determine any tasks to suggest from the existing note content");
return null;
}
if (chosenTasks.length) {
const taskArray = chosenTasks.map((task) => `- [ ] ${task}
`);
console.debug("Replacing with tasks", taskArray);
await app.context.replaceSelection(`
${taskArray.join("\n")}`);
}
return null;
}
async function addMoreTasks(plugin2, app, allowResponse, contentIndexText, chosenTasks, unchosenTasks) {
const rejectedResponses = unchosenTasks;
const moreTaskResponse = await notePromptResponse(
plugin2,
app,
app.context.noteUUID,
"suggestTasks",
{ chosenTasks },
{ allowResponse, contentIndexText, rejectedResponses }
);
const newTasks = moreTaskResponse && taskArrayFromResponse(moreTaskResponse);
if (newTasks) {
newTasks.forEach((t) => !unchosenTasks.includes(t) && !chosenTasks.includes(t) ? unchosenTasks.push(t) : null);
}
}
function taskArrayFromResponse(response) {
if (typeof response === "string") {
return arrayFromResponseString(response);
} else {
let tasks = response.result || response.response?.result || response.input?.response?.result || response.input?.result;
if (typeof tasks === "object" && !Array.isArray(tasks)) {
tasks = Object.values(tasks);
if (Array.isArray(tasks) && Array.isArray(tasks[0])) {
tasks = tasks[0];
}
}
if (!Array.isArray(tasks)) {
console.error("Could not determine tasks from response", response);
return [];
}
if (tasks.find((t) => typeof t !== "string")) {
tasks = tasks.map((task) => {
if (typeof task === "string") {
return task;
} else if (Array.isArray(task)) {
return task[0];
} else {
const objectValues = Object.values(task);
return objectValues[0];
}
});
}
if (tasks.length === 1 && tasks[0].includes("\n")) {
tasks = tasks[0].split("\n");
}
const tasksWithoutPrefix = tasks.map((taskText) => optionWithoutPrefix(taskText));
console.debug("Received tasks", tasksWithoutPrefix);
return tasksWithoutPrefix;
}
}
 
// lib/plugin.js
var plugin = {
// --------------------------------------------------------------------------------------
constants: {
labelApiKey: OPENAI_KEY_LABEL,
labelAiModel: AI_MODEL_LABEL,
pluginName: PLUGIN_NAME,
requestTimeoutSeconds: 30
},
// Plugin-global variables
callCountByModel: {},
errorCountByModel: {},
lastModelUsed: null,
noFallbackModels: false,
ollamaModelsFound: null,
// --------------------------------------------------------------------------
appOption: {
// --------------------------------------------------------------------------
[LOOK_UP_OLLAMA_MODEL_ACTION_LABEL]: async function(app) {
const noOllamaString = `Unable to connect to Ollama. Ensure you stop the process if it is currently running, then start it with "OLLAMA_ORIGINS=https://plugins.amplenote.com ollama serve"`;
try {
const ollamaModels = await ollamaAvailableModels(this);
if (ollamaModels?.length) {
this.ollamaModelsFound = ollamaModels;
app.alert(`Successfully connected to Ollama! Available models include:
 
* ${this.ollamaModelsFound.join("\n* ")}`);
} else {
const json = await fetchJson(`${OLLAMA_URL}/api/tags`);
if (Array.isArray(json?.models)) {
app.alert("Successfully connected to Ollama, but could not find any running models. Try running 'ollama run mistral' in a terminal window?");
} else {
app.alert(noOllamaString);
}
}
} catch (error) {
app.alert(noOllamaString);
}
},
// --------------------------------------------------------------------------
"Show AI Usage by Model": async function(app) {
const callCountByModel = this.callCountByModel;
const callCountByModelText = Object.keys(callCountByModel).map((model) => `${model}: ${callCountByModel[model]}`).join("\n");
const errorCountByModel = this.errorCountByModel;
const errorCountByModelText = Object.keys(errorCountByModel).map((model) => `${model}: ${errorCountByModel[model]}`).join("\n");
let alertText = `Since the app was last started on this platform:
${callCountByModelText}
 
`;
if (errorCountByModelText.length) {
alertText += `Errors:
` + errorCountByModelText;
} else {
alertText += `No errors reported.`;
}
await app.alert(alertText);
},
// --------------------------------------------------------------------------
"Answer": async function(app) {
let aiModels = await recommendedAiModels(this, app, "answer");
const options = aiModels.map((model) => ({ label: model, value: model }));
const [instruction, preferredModel] = await app.prompt(QUESTION_ANSWER_PROMPT, {
inputs: [
{ type: "text", label: "Question", placeholder: "What's the meaning of life in 500 characters or less?" },
{
type: "radio",
label: `AI Model${this.lastModelUsed ? `. Defaults to last used` : ""}`,
options,
value: this.lastModelUsed || aiModels?.at(0)
}
]
});
console.debug("Instruction", instruction, "preferredModel", preferredModel);
if (!instruction)
return;
if (preferredModel)
aiModels = [preferredModel].concat(aiModels.filter((model) => model !== preferredModel));
return await this._noteOptionResultPrompt(
app,
null,
"answer",
{ instruction },
{ preferredModels: aiModels }
);
},
// --------------------------------------------------------------------------
"Converse (chat) with AI": async function(app) {
const aiModels = await recommendedAiModels(plugin, app, "chat");
await initiateChat(this, app, aiModels);
}
},
// --------------------------------------------------------------------------
insertText: {
// --------------------------------------------------------------------------
"Complete": async function(app) {
return await this._completeText(app, "insertTextComplete");
},
// --------------------------------------------------------------------------
"Continue": async function(app) {
return await this._completeText(app, "continue");
},
// --------------------------------------------------------------------------
[IMAGE_FROM_PRECEDING_LABEL]: async function(app) {
const apiKey = await apiKeyFromAppOrUser(this, app);
if (apiKey) {
await imageFromPreceding(this, app, apiKey);
}
},
// --------------------------------------------------------------------------
[IMAGE_FROM_PROMPT_LABEL]: async function(app) {
const apiKey = await apiKeyFromAppOrUser(this, app);
if (apiKey) {
await imageFromPrompt(this, app, apiKey);
}
},
// --------------------------------------------------------------------------
[SUGGEST_TASKS_LABEL]: async function(app) {
const contentIndexText = `${PLUGIN_NAME}: ${SUGGEST_TASKS_LABEL}`;
return await taskArrayFromSuggestions(this, app, contentIndexText);
}
},
// --------------------------------------------------------------------------
// https://www.amplenote.com/help/developing_amplenote_plugins#noteOption
noteOption: {
// --------------------------------------------------------------------------
"Revise": async function(app, noteUUID) {
const instruction = await app.prompt("How should this note be revised?");
if (!instruction)
return;
await this._noteOptionResultPrompt(app, noteUUID, "reviseContent", { instruction });
},
// --------------------------------------------------------------------------
"Sort Grocery List": {
check: async function(app, noteUUID) {
const noteContent = await app.getNoteContent({ uuid: noteUUID });
return /grocer|bread|milk|meat|produce|banana|chicken|apple|cream|pepper|salt|sugar/.test(noteContent.toLowerCase());
},
run: async function(app, noteUUID) {
const startContent = await app.getNoteContent({ uuid: noteUUID });
const groceryArray = groceryArrayFromContent(startContent);
const sortedGroceryContent = await groceryContentFromJsonOrText(this, app, noteUUID, groceryArray);
if (sortedGroceryContent) {
app.replaceNoteContent({ uuid: noteUUID }, sortedGroceryContent);
}
}
},
// --------------------------------------------------------------------------
"Summarize": async function(app, noteUUID) {
await this._noteOptionResultPrompt(app, noteUUID, "summarize", {});
}
},
// --------------------------------------------------------------------------
// https://www.amplenote.com/help/developing_amplenote_plugins#replaceText
replaceText: {
"Answer": {
check(app, text) {
return /(who|what|when|where|why|how)|\?/i.test(text);
},
async run(app, text) {
const answerPicked = await notePromptResponse(
this,
app,
app.context.noteUUID,
"answerSelection",
{ text },
{ confirmInsert: true, contentIndexText: text }
);
if (answerPicked) {
return `${text} ${answerPicked}`;
}
}
},
// --------------------------------------------------------------------------
"Complete": async function(app, text) {
const { response } = await sendQuery(this, app, app.context.noteUUID, "replaceTextComplete", { text: `${text}<token>` });
if (response) {
return `${text} ${response}`;
}
},
// --------------------------------------------------------------------------
"Revise": async function(app, text) {
const instruction = await app.prompt("How should this text be revised?");
if (!instruction)
return null;
return await notePromptResponse(
this,
app,
app.context.noteUUID,
"reviseText",
{ instruction, text }
);
},
// --------------------------------------------------------------------------
"Rhymes": {
check(app, text) {
return text.split(" ").length <= MAX_WORDS_TO_SHOW_RHYME;
},
async run(app, text) {
return await this._wordReplacer(app, text, "rhyming");
}
},
// --------------------------------------------------------------------------
"Thesaurus": {
check(app, text) {
return text.split(" ").length <= MAX_WORDS_TO_SHOW_THESAURUS;
},
async run(app, text) {
return await this._wordReplacer(app, text, "thesaurus");
}
}
},
// --------------------------------------------------------------------------
// Private methods
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
// Waypoint between the oft-visited notePromptResponse, and various actions that might want to insert the
// AI response through a variety of paths
// @param {object} promptKeyParams - Basic instructions from promptKey to help generate user messages
async _noteOptionResultPrompt(app, noteUUID, promptKey, promptKeyParams, { preferredModels = null } = {}) {
let aiResponse = await notePromptResponse(
this,
app,
noteUUID,
promptKey,
promptKeyParams,
{ preferredModels, confirmInsert: false }
);
if (aiResponse?.length) {
const trimmedResponse = cleanTextFromAnswer(aiResponse);
const options = [];
if (noteUUID) {
options.push(
{ label: "Insert at start (prepend)", value: "prepend" },
{ label: "Insert at end (append)", value: "append" },
{ label: "Replace", value: "replace" }
);
}
options.push({ label: "Ask follow up question", value: "followup" });
let valueSelected;
if (options.length > 1) {
valueSelected = await app.prompt(`${APP_OPTION_VALUE_USE_PROMPT}
 
${trimmedResponse || aiResponse}`, {
inputs: [{ type: "radio", label: "Choose an action", options, value: options[0] }]
});
} else {
valueSelected = await app.alert(trimmedResponse || aiResponse, { actions: [{ label: "Ask follow up questions" }] });
if (valueSelected === 0)
valueSelected = "followup";
}
console.debug("User picked", valueSelected, "for response", aiResponse);
switch (valueSelected) {
case "prepend":
app.insertNoteContent({ uuid: noteUUID }, aiResponse);
break;
case "append":
app.insertNoteContent({ uuid: noteUUID }, aiResponse, { atEnd: true });
break;
case "replace":
app.replaceNoteContent({ uuid: noteUUID }, aiResponse);
break;
case "followup":
const aiModel = this.lastModelUsed || (preferredModels?.length ? preferredModels[0] : null);
const promptParams = await contentfulPromptParams(app, noteUUID, promptKey, promptKeyParams, aiModel);
const systemUserMessages = promptsFromPromptKey(promptKey, promptParams, [], aiModel);
const messages = systemUserMessages.concat({ role: "assistant", content: trimmedResponse });
return await initiateChat(this, app, preferredModels?.length ? preferredModels : [aiModel], messages);
}
return aiResponse;
}
},
// --------------------------------------------------------------------------
async _wordReplacer(app, text, promptKey) {
const { noteUUID } = app.context;
const note = await app.notes.find(noteUUID);
const noteContent = await note.content();
let contentIndex = noteContent.indexOf(text);
if (contentIndex === -1)
contentIndex = null;
const allowResponse = (jsonResponse) => {
return typeof jsonResponse === "object" && jsonResponse.result;
};
const response = await notePromptResponse(
this,
app,
noteUUID,
promptKey,
{ text },
{ allowResponse, contentIndex }
);
let options;
if (response?.result) {
options = arrayFromJumbleResponse(response.result);
options = options.filter((option) => option !== text);
} else {
return null;
}
const optionList = options.map((word) => optionWithoutPrefix(word))?.map((word) => word.trim())?.filter((n) => n.length && n.split(" ").length <= MAX_REALISTIC_THESAURUS_RHYME_WORDS);
if (optionList?.length) {
console.debug("Presenting option list", optionList);
const selectedValue = await app.prompt(`Choose a replacement for "${text}"`, {
inputs: [{
type: "radio",
label: `${optionList.length} candidate${optionList.length === 1 ? "" : "s"} found`,
options: optionList.map((option) => ({ label: option, value: option }))
}]
});
if (selectedValue) {
return selectedValue;
}
} else {
const followUp = apiKeyFromApp(this, app)?.length ? "Consider adding an OpenAI API key to your plugin settings?" : "Try again?";
app.alert(`Unable to get a usable response from available AI models. ${followUp}`);
}
return null;
},
// --------------------------------------------------------------------------
async _completeText(app, promptKey) {
const replaceToken = promptKey === "continue" ? `${PLUGIN_NAME}: Continue` : `${PLUGIN_NAME}: Complete`;
const answer = await notePromptResponse(
this,
app,
app.context.noteUUID,
promptKey,
{},
{ contentIndexText: replaceToken }
);
if (answer) {
const trimmedAnswer = await trimNoteContentFromAnswer(app, answer, { replaceToken });
console.debug("Inserting trimmed response text:", trimmedAnswer);
return trimmedAnswer;
} else {
return null;
}
}
};
var plugin_default = plugin;
return plugin;
})()